(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(g(x, y), f(y, y)) → f(g(y, x), y)

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(g(z0, z1), f(z1, z1)) → f(g(z1, z0), z1)
Tuples:

F(g(z0, z1), f(z1, z1)) → c(F(g(z1, z0), z1))
S tuples:

F(g(z0, z1), f(z1, z1)) → c(F(g(z1, z0), z1))
K tuples:none
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F(g(z0, z1), f(z1, z1)) → c(F(g(z1, z0), z1))
We considered the (Usable) Rules:none
And the Tuples:

F(g(z0, z1), f(z1, z1)) → c(F(g(z1, z0), z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F(x1, x2)) = x2   
POL(c(x1)) = x1   
POL(f(x1, x2)) = [1] + x1 + [3]x2   
POL(g(x1, x2)) = 0   

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(g(z0, z1), f(z1, z1)) → f(g(z1, z0), z1)
Tuples:

F(g(z0, z1), f(z1, z1)) → c(F(g(z1, z0), z1))
S tuples:none
K tuples:

F(g(z0, z1), f(z1, z1)) → c(F(g(z1, z0), z1))
Defined Rule Symbols:

f

Defined Pair Symbols:

F

Compound Symbols:

c

(5) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(6) BOUNDS(O(1), O(1))